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Abstract. The identification of semantic concepts in tabular data is crucial for numerous ap-
plications, including data integration, cleaning, retrieval, feature engineering, and model devel-
opment in machine learning. Recently, various studies have introduced methods using supervised
learning or heuristic models to annotate semantic types. However, these approaches have limita-
tions, making it difficult for them to generalize to a wide range of concepts or examples. Addi-
tionally, many neural network-based methods struggle with scalability, and the majority of the
existing techniques do not perform well with numerical data. We present Kepler-aSI, a column-
to-concept mapping technique that employs a maximum likelihood estimation approach through
sets. This method effectively leverages large amounts of publicly available table data, even in
the presence of some noise. We showcase the effectiveness of Kepler-aSI in the Semtab2024
challenge.
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1 Introduction

Semantic annotation of structured data plays a vital role in various applications, from information
retrieval and data preparation to training classifiers. For instance, schema matching in data integra-
tion demands accurate identification of column types in input tables [38]. Similarly, automated data
cleaning and transformation techniques use semantic types to establish validation rules [30]. Tasks
like dataset discovery [46] and feature acquisition in machine learning [24] depend on assessing the
semantic similarity of entities across multiple tables. Many commercial tools, including Google Data
Studio [34], Microsoft Power BI [37], and Tableau [12], leverage these annotations to interpret input
data, detect inconsistencies, and create visualizations. Semantic annotation of a table column involves
identifying real-world concepts that represent the data’s meaning. While this process is critical for
numerous data science applications, most systems currently rely on regular expression or rule-based
techniques to identify column types. These methods necessitate predefined models, struggle with noisy
datasets, and fail to generalize beyond the input models. Recently, there has been increasing interest
in applying deep learning techniques to detect semantic types, due to their robustness against noisy
data and superiority over traditional rule-based systems. Earlier approaches can be divided into two
categories based on the training data used and the types of concepts they identify.

Copyright © 2024 for this paper by its authors. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0).
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(a) Knowledge Graphs: ColNet [15] and HNN [16] are among the latest methods that utilize se-
mantic types derived from knowledge graphs like Wikidata. These techniques generate candidate types
and train classifiers to estimate the likelihood of each candidate type. However, they mainly identify
semantic types for columns partially present in the knowledge graphs and struggle to generalize to
broader categories, such as person names.

(b) Tabular Data: Sherlock [26] and Sato [45] are recent approaches that treat the task of labeling
concepts as a multi-class classification problem. These methods train classifiers using open data but
are confined to concepts that precisely match the predefined list of Wikidata concepts.

To address the limitations of prior work, we make the following observations :

1. There is a plethora of publicly available structured data from diverse sources such as data.gov,
Wikipedia tables, explored web table collections, and others, as well as knowledge graphs like
DBPedia and Wikidata;

2. It is true that not all sources are well-organized, and some degree of noise within each source must
be considered. However, a robust ensemble from multiple input sources can help eliminate noise.
While a strict classification modeling method may require reference data, a carefully designed
probability estimation method can be more tolerant of noise and scale with larger data contents;

3. Numerical data requires special treatment compared to categorical entity data. Although a nu-
merical value is less unique than a named entity (e.g., 20 can mean several things), a group of
numbers representing a certain concept follows particular patterns. The use of meta-features such
as range and distribution aids in the rapid identification of numerical concepts and is robust to
small amounts of noise;

4. Instead of considering each column of the table in isolation, the overall context of the dataset,
combined with information from a knowledge graph (KG), allows for the joint estimation of the
probability of correspondence between the KG concepts and the attributes of the tabular data.
This improves the identification of links and similarities by taking into account the relationships
between the concepts in the KG and the structures of the tabular data.

The Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab) was es-
tablished to evaluate systems by proposing different tasks and datasets [2, 3, 19, 27, 28, 25]. Systems
use various methods to generate annotations, either by analyzing large knowledge bases [2, 3, 4, 19,
27, 28, 25] or by using classification based on training examples [22, 40].

We develop our solution within theKepler-aSI system[9, 8, 6], and we present the results obtained
from its use in the SemTab challenge on tabular data to knowledge graph matching, as described in
Section 2 & 3. This challenge evaluates various semantic annotation methods on large-scale tabular
data. In Section 4, we describe our approach by detailing the similarities and differences with other
competing approaches.

2 SemTab Challenge

The Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab) evaluates
table annotation systems on various datasets and annotation tasks [20]. In its sixth edition (SemTab
2024), it consists of two rounds, each featuring a variety of tables to be annotated with concepts
from Wikidata. The evaluation of system accuracy follows a similar approach to previous versions
of SemTab. Specifically, SemTab20244 is based on using typical multi-class classification metrics, as
detailed below. Additionally, for the CTA task, we adopt the ”cscore” metric to reflect the distance in
the type hierarchy between the predicted column type and the ground truth semantic type.

The challenge is divided into five annotation tasks ( Figure 1):

4 https://sem-tab-challenge.github.io/2024/tracks/accuracy-track.html
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Fig. 1. SemTab tasks

– CTA Task: Assigning a semantic type (a Wikidata class as fine-grained as possible) to a column.
– CEA Task: Matching a cell to a Wikidata entity.
– CPA Task: Assigning a Wikidata property to the relationship between two columns.
– RA Task: Assigning a Wikidata entity to a table row.
– TD Task: Assigning a Wikidata class to a table.

2.1 Table Types :

– Horizontal Tables : A grid where each row represents one entity and each column shares the
same semantic type .

Fig. 2. Horizontal Table Example

– Entity Tables : A list where rows describe different properties of a single entity, with each row
representing a property of that entity.

3 Related Work

In this section, we discuss prior technqiues that have been developed to identify the type of a column.

3.1 Regular Expression and Lookup-Based Techniques

Many techniques have been developed to identify the type of a column in semantic tables, often relying
on regular expressions and lookup-based methods. These techniques use manually defined patterns to
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Fig. 3. Entity Table Example

identify column types, which play a critical role in various data science pipelines such as feature
enrichment [24], schema mapping, data cleaning and transformation [29, 30], and structured data
search [23]. However, the manual effort required for enumerating these patterns can be significant. To
reduce this manual effort, some techniques perform fuzzy lookups of each cell value over knowledge
graphs to identify concepts [18, 24, 28]. These methods assume that the cell values are present in the
knowledge graphs and are not robust to noise. Deng et al. [21] presented a scalable method based on
fuzzy matching between entities for a concept and the cell values of a column, using similarity scores for
ranking. However, this approach can lack robustness, as it might confuse similar entities (e.g., movies
and novels with the same name). For numerical columns, Neumaier et al. [35] developed a method that
clusters values and uses nearest neighbor search to identify the most likely concept. This method does
not leverage column metadata and the context of co-occurring columns.

3.2 Graphical Models

Advanced concept identification techniques generate features for each input column and use prob-
abilistic graphical models to predict labels. Limaye et al. [31] use a graphical model to collectively
determine cell annotations, column annotations, and binary column relationships. While effective,
these techniques can be sensitive to noisy values and might not capture semantically similar values,
which have been successfully captured by recent word embedding-based techniques.

3.3 Learning Approaches Using Neural Networks

Chen et al. [15] introduced ColNet, a CNN-based approach for classification. It constructs positive and
negative examples by looking up cell values over DBPedia, embedding these examples using word2vec to
train the CNN. This approach helps build context among different cells in the column. Chen et al. [16]
extended this method to leverage inter-column semantics using a hybrid neural network (HNN), though
this technique is slow, requiring extensive training time. Sherlock [26] models concept identification
as a multi-class classification problem, training a multi-input feed-forward deep neural network over a
large corpus of open data containing more than 600K columns referring to 78 semantic types. However,
its reliance on large amounts of training data limits its applicability to less common concepts. SATO
[45] builds on Sherlock by using context from co-occurring columns to jointly predict the concept of
all columns in a dataset, treating the table as a document to generate a vector of terms representative
of the table context. Nevertheless, its effectiveness is limited when column ordering is irrelevant.

3.4 Semantic Table Interpretation Systems

This section examines the literature by analyzing various contributions, focusing on the tasks of Column
Type Annotation (CTA), Column Entity Annotation (CEA), and Column Pair Annotation (CPA). The
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methods are discussed from different perspectives: strengths, gaps, and the impact of table elements
and/or the knowledge graph (KG) structure on performance metrics. Various research works have tack-
led the issue of Semantic Table Interpretation (STI), varying in their deployed techniques and adopted
approaches.

TabEL [13] begins with preprocessing, generates candidates for each cell using the YAGO ontology,
and ranks them according to their string similarity with the cell. An undirected probabilistic graph
model is then generated to capture the contextual co-occurrences of the entities. ADOG [36] uses an
aggregation of string-based similarity, the number of property occurrences, and the normalized score
of the Elasticsearch tool for each match via DBPedia. Tabularisi [41] relies on a statistical approach
using TF-IDF to rank candidates for the CEA task. The scores are aggregated from TF-IDF, Leven-
shtein similarity, and word similarity. Magic [39] uses comparison matrices called INK embeddings to
improve computational efficiency and perform CEA, CPA, and CTA annotations. It also introduces
the concept of a key column for annotation. LOD4ALL [33] uses an RDF storage database and a score
database to generate candidates and performs CTA, CEA, and CPA tasks after filtering the CTA
results. CSV2KG [43] goes through six phases, including raw cell annotations, candidate disambigua-
tion, and inferring column types and properties between columns. LinkingPark [17] uses a cascading
approach to generate candidate entities and property links for annotation. DAGOBAH [14] consists of
sequential tools to identify semantic relationships, enrich knowledge graphs, and produce metadata for
reference. JenTab [1] operates through nine modules to generate and filter candidates for CTA, CEA,
and CPA tasks using various filtering and solution selection strategies. LexMa [42] starts with prepro-
cessing, evaluates lexical matching based on cosine similarity, and uses Wikidata and DBPedia search
services. MantisTable [18] categorizes columns, generates candidates from SPARQL queries, performs
cross-compatibility analysis for CEA, and uses majority voting for CPA. DAGOBAH Embeddings [14]
proposes an annotation vision based on embedding vector spaces, using K-means clustering and TransE
embeddings. Radar Station [32] uses graph embedding to detect latent relationships between entities
and improve disambiguation. TCN [44] exploits intra and inter-table contextual information for CTA
and CPA tasks, using transfer learning and unsupervised BERT-like pre-training. DODUO [40] learns
to annotate relationships between column type and column pair by injecting table contexts into the
prediction process, using column representations and token sequences.

4 Kepler-aSI approach

In this section, we will provide a detailed description of our system and highlight some fundamental
concepts related to the technical challenges we have identified. To tackle the tasks presented in the
SemTab challenge, our system, Kepler-aSI [10, 11, 7], follows the workflow illustrated in Figure
4. It consists of five main nested modules, namely Preprocessing, Query Engine, (and/or External
Resource Consultation), KG Candidate Filtering, Annotation, and File Generation. While the overall
steps remain the same for each round, minor adjustments may be made based on specific variations
observed in each case.

4.1 Module 1: Pre-processing

1. Data Sources : Data is extracted from two main sources:

– Data Lakes : Tables containing various columns, for example, a country table with columns
such as ’Country Name,’ ’Population,’ and ’Capital.’

– Knowledge Graphs : Databases like DBPedia and Wikidata, providing structured information
about entities such as countries and their attributes.

2. Data Extraction and Categorization Columns are processed according to their specific types:



6 Wiem Baazouzi, Marouen Kachroudi, and Sami Faiz

Fig. 4. Kepler-aSI Approach

– Categorical String Columns :
• For example, for a ’Country Name’ column, extracting entities like ’France’ and ’Canada.’
• Creating a concept index by counting the occurrences of each country.

– Numerical Columns :
• For a ’Population’ column, structuring values into intervals (e.g., 1 to 10 million, 10 to 50
million).

– Mixed-Type Columns :
• For example, a column containing combinations of country names and capitals (such as
’France - Paris’), where techniques for both categorical and numerical columns are com-
bined.

3. Indexing : Various indices facilitate prediction and annotation:

– Inverted Entity Concept Count Index:
• Associates each country (e.g., ’France’) with related concepts, such as population and cap-
ital, along with their occurrences in the data.

– Numeric Interval Tree Index:
• Structures population data into an interval tree, for example, ’1-10 million’ and ’10-50
million,’ for efficient analysis.
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– Belief Sharing Index:
• Uses tools like Word2Vec to create similarity vectors, for instance, to understand that
’France’ and ’Germany’ are geographical entities.

– Composite Pattern Tree Index:
• Generates models linking data columns, such as the association between ’Country Name’
and ’Population.’

– Column Co-occurrence and Tuple Validation Index:
• Validates relationships between concepts using knowledge graphs, such as ’France - capi-
talCity - Paris.’

4. Prediction Models : Specific models predict column types and annotate cells:

– Categorical Entity Column Prediction:
• For a ’Country Name’ column, using the entity concept index to predict country names in

the test data.

– Numerical Column Prediction:
• For a ’Population’ column, using the numeric interval tree indices to predict value ranges
in the test columns.

– Mixed-Type Column Prediction:
• For a mixed-type column, using belief sharing indices and composite models to predict
data combinations.

5. Validation and Ranking :
– Column Concept Co-existence and Tuple Validation:
• Validate the predicted concepts and rank annotations using the column co-occurrence and

tuple validation index.
– Final Result:
• Generate ranked lists of concepts for each column in the test data, providing precise anno-
tations for each column type.

4.2 Module 2: Semantic Annotation

After performing the various pre-processing treatments, the tabular data annotation phase can be
triggered.

Query Engine Sub-module The annotation module acts as the core component of the annotation
phase. It allows us to extract candidate annotations from Knowledge Graphs (such as Wikidata) using
parameterized SPARQL queries. At the beginning of the annotation phase, a switcher component
examines the annotation context and determines the appropriate query to execute. This process is
further detailed in the following section.

Example 1. Starting from an English entity description, below is an example of a SPARQL query to
retrieve the label, class name, and properties from Wikidata (or possibly DBPedia):

1

2 endpo in t u r l = ” https : // query . wik idata . org / spa rq l ”
3 query = ”””
4 SELECT ? itemLabel ? c l a s s ? property
5 WHERE {
6 ? item ? i t emDesc r ip t i on ”%s”@en .
7 ? item wdt : P31 ? c l a s s
8 }”””
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Assigning a Semantic Type to a Column (CTA) The task is to annotate each entity column
with elements from Wikidata (or possibly DBPedia) as its type, identified during the preprocessing
phase.

Algorithm 1: CTA task

Input: Table T
Output: Annotated Table T ′

1 i← 0
2 while coli ∈ T do
3 class annot← ∅ /* Assigning a semantic type to a column. */

4 while cell ∈ col do
5 Label← cell.expressionV alue
6 CorrectedLabel← SpellCheckEngine(Label)
7 KG candidates← QueryEngine(CorrectedLabel)
8 class annot← KG candidates

9 Annotate(T ′.coli, getBestRankedClass(class annot))

To annotate each entity column with elements from Wikidata, we utilize the tags associated with
each item in Wikidata. This approach enables the identification of semantic information. The CTA task
is accomplished by using the Wikidata APIs to search for an item based on its description. During the
pre-processing phase, we collect essential information about each entity from Wikidata, including its
instance list (indicated by the instanceOf primitive and identified by the P31 code), its subclasses
(indicated by the subclassOf primitive and identified by the P279 code), and its overlaps with other
classes (indicated by the partOf primitive and identified by the P361 code). To perform the CTA task,
we use a SPARQL query that leverages this entity information. The SPARQL query serves as an
interrogation tool, utilizing the gathered information about the entity’s instances (P31), subclasses
(P279), or class overlaps (P361) to determine the appropriate data type. The result of the SPARQL
query may yield a single type. However, in cases where multiple types are returned, a disambiguation
treatment is carried out to resolve the ambiguity. The syntax for the SPARQL query is as follows:

1

2 PREFIX rd f s : <http :// wik idata . org / r e sou r c e/>
3 SELECT ? item ? itemLabel ? c l a s s
4 WHERE {
5 ? item ? i t emDesc r ip t i on ”%s”@en .
6 ? item wdt : P31 ? c l a s s
7 }

Code Listing 1.1. The SPARQL query for the CTA task.

To ensure efficient and fast information retrieval, all the candidates obtained from the query are in-
dexed using effective techniques. Each identified annotation is indexed and stored in a NoSQL database,
specifically MongoDB5. This allows for efficient storage and retrieval of the annotations. The final an-
notation, which represents the result of the matching process, is determined by querying this MongoDB
database through its integrated search engine. MongoDB was chosen as the database solution due to
its ability to handle nested structures, which is important for organizing the annotations. Additionally,
MongoDB offers significant performance benefits, such as scalability and efficient search capabilities,
resulting in improved execution times. By using MongoDB, we can leverage its processing capabilities
and benefit from its efficient scaling and search efficiency, ensuring the smooth and effective retrieval
of annotations during the matching process.

5 https://www.mongodb.com/docs/
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Assigning a Cell to a KG Entity (CEA) The CEA task focuses on annotating the cells of a given
table with specific entities listed on Wikidata or DBPedia. This task follows the same principle as the
CTA task. Algorithm ?? provides an overview of the CEA task.

Algorithm 2: CEA task

Data: Table T
Result: Annotated Table T ′

1 i← 0
2 while rowi ∈ T do
3 entity annot← ∅ /* Matching a cell to a Wikidata entity. */

4 while cell ∈ row do
5 Label← cell.expressionV alue
6 CorrectedLabel← SpellCheckEngine(Label)
7 KG candidates← QueryEngine(CorrectedLabel)
8 entity annot← KG candidates;

9 Annotate(T ′.rowi, getBestRankedEntity(entity annot)

Our approach reuses the results of the CTA task process by introducing the necessary modifications
to the SPARQL query. If the operation returns more than one annotation, we run a treatment based
on examining the context of the considered column, relative to what was obtained with the CTA task,
to overcome the ambiguity problem. Analogously to the CTA task, the CEA task can be performed
through a SPARQL query as in the listing. The CEA task aims to annotate the cells of a given table to
a specific entity listed on Wikidata or eventually another KG. Moreover, if the concerned cells belong
to columns already annotated during the CTA task, then their result can be reused by making the
necessary adjustments. The process is the same as the CTA task. If the return value of the SPARQL
query is a single candidate, then this candidate is retained as an annotation. If we get more than one
candidate, the list is further processed to disambiguate. The SPARQL query syntax is as follows:

1

2 PREFIX rd f s : <http :// wik idata . org / r e sou r c e/>
3 SELECT ? ob j e c t ? ob j ec tLabe l ? c l a s s
4 WHERE {
5 ? ob j e c t ? ob j e c tDe s c r i p t i on ”%s”@en .
6 ? ob j e c t wdt : P31 ? c l a s s
7 }

Code Listing 1.2. The SPARQL query dealing with the CEA task.

Matching a Property to a KG Entity (CPA) After annotating the cell values as well as the dif-
ferent types of each of the considered entities, we identify the relationships between two cells appearing
on the same row via a property using a SPARQL query, as detailed by Algorithm 3. Indeed, the CPA
task involves annotating the relationship between two cells in a given row via a property. Similarly,
this task is performed analogously to the CTA and CEA tasks. The only difference in the CPA task is
that the SPARQL query must select both the entity and the corresponding attributes as depicted by
the following listing:

1

2 PREFIX rd f s : <http :// wik idata . org / r e sou r c e/>
3 SELECT ? item1 ? property ? item2
4 WHERE {
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5 BIND(wdt : P279 AS ? property )
6 ? item1 ? property ? item2 .
7 OPTIONAL { ? item1 wdt : P31 ? c l a s s . }
8 OPTIONAL { ? item2 wdt : P31 ? c l a s s . }
9 }

Code Listing 1.3. The SPARQL query designed for the CEA task.

The properties are easy to match since we have already detected them during CEA and CTA task
processing.

Algorithm 3: CPA task

Data: Table T
Result: Annotated Table T ′

1 i← 0 j ← 0
2 while (coli, colj) ∈ T andi ̸= j do
3 property annot← ∅/* Assigning a KG property to the relationship between two

columns. */

4 KG class Label1 ← Annotate(T’.coli, getMostFrequentClass(class annot))
5 KG class Label2 ← Annotate(T’.colj , getMostFrequentClass(class annot))
6 KG candidates← QueryEngine(KG class Label1,KG class Label2)
7 property annot← KG candidates;
8 Annotate(T ′.coli,T’.colj , getBestRankedProperty(property annot)

The CPA task aims to annotate the relationship between two cells within a row by utilizing a
specific property. This task follows a similar approach to the CTA and CEA tasks, employing analogous
techniques and methodologies. However, there is a key distinction in the CPA task, as the SPARQL
query is designed to select both the entity and the corresponding attributes. During the CPA task,
the matching of properties becomes straightforward due to the prior determination of properties in
the CEA and CTA task processing stages. This ensures seamless integration of the CPA task into the
overall annotation process. The primary objective of the CPA task is to establish and annotate the
relationship between two cells within a row, leveraging the identified properties. By leveraging the
information obtained from the CEA and CTA tasks, the CPA task contributes to enhancing the semantic
understanding and interpretation of the tabular data.

Disambiguation It is important to acknowledge that an entity within Knowledge Graphs can have
multiple classes associated with it. The presence of multiple classes for an entity enriches its represen-
tation and provides a more comprehensive understanding of its semantic context within the Knowledge
Graphs.

– CTA Candidates Disambiguation: To determine the optimal annotation for a given class or
column from the available semantic annotation candidates, a selection process is employed that is
based on voting and distance similarities. This involves calculating the average score of the search
results, considering contributions from each column and scores obtained from distance similarity
calculations. The goal is to identify the candidate feature with the highest average score, which is
then chosen as the final annotation. The voting mechanism aggregates preferences from different
columns, aiding in the selection of the most suitable annotation. Additionally, the consideration of
distance similarities provides a measure of proximity between candidate features and the desired
annotation. Through this process, we enhance the accuracy and reliability of the final annotation
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decision.

– CEA Candidates Disambiguation: To determine the optimal feature annotation among avail-
able semantic annotation candidates, a selection process is used that involves calculating the av-
erage score of the search results, taking into account both the row-based voting score and the
distance similarity score. The row-based voting score reflects preferences from different rows, while
the distance similarity score quantifies the similarity between candidate features and the desired
annotation. By combining these scores, the candidate with the highest average score is selected as
the final annotation. This process ensures alignment with row preferences and strong similarity to
the desired annotation, facilitating the identification of the most appropriate and reliable feature
annotation.

– CPA Candidates Disambiguation: In selecting the optimal annotation for a property between
two columns from available semantic annotation candidates, a selection approach is used that in-
volves calculating the average score of the search results. This calculation considers both the Match
value score between cells of the two columns and the similarity score of distances. The Match value
score measures the compatibility between cell values, while the similarity score evaluates the prox-
imity between candidate properties. The candidate with the highest average score, reflecting both
the Match value score and distance similarity score, is selected as the final property annotation.
This process ensures that the chosen property annotation effectively captures relationships between
the two columns, considering both cell value compatibility and distance similarity.

4.3 KG Candidates Filtering Module

The candidate annotation filtering process is facilitated by an efficient and rapid Information Retrieval
technique. Once candidate annotations are identified, they are indexed and stored in a NoSQL database,
specifically MongoDB. The final annotation is then determined as the result of querying this database
using its integrated search engine, selecting the candidate annotation with the highest score and top
rank, as outlined in lines 10 and 8 of Algorithms 1, 2, and 3, respectively [5]. MongoDB is chosen for
its execution speed, scalability, and search efficiency, which contribute to the enhanced performance
and effectiveness of the candidate annotation filtering process. By leveraging MongoDB’s capabilities,
efficient retrieval and selection of the most suitable annotations are ensured, streamlining the overall
annotation workflow.

5 Kepler-aSI performance and results

In this section, we will present the results of Kepler-aSI for the various matching tasks in the second
round of SemTab 20246. These results highlight the strengths of Kepler-aSI, showcasing its encour-
aging performance despite the range of challenges encountered.

In Round 2, the datasets are expanded versions of those from Round 1, aiming to assess the accuracy
of solutions that can scale effectively, given the common trade-off between accuracy and performance.
The dataset WikidataTables2024R2 7 is quite similar to its Round 1 counterpart but features slight
variations and includes 78,745 tables. Additionally, the datasets tBiodivL - Large8 and tBiomedL-
Large9 are used, with Wikidata10 serving as the target knowledge graph. For offline use, the March

6 https://sem-tab-challenge.github.io/2024/tracks/accuracy-track.html
7 https://sem-tab-challenge.github.io/2024/tracks/accuracy-track.html
8 https://zenodo.org/records/10283083
9 https://zenodo.org/records/10283119

10 https://zenodo.org/records/12588085
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20, 2024 dump is available, and assistance with triplestore setup can be sought from the organizers.

All datasets are organized into two data folds: training and validation. Specifically, WikidataTables
comprises relational (horizontal) tables, while tBiodiv and tBiomed feature both entity (vertical) and
relational (horizontal) tables. The supported tasks and their formats are as follows:

– WikidataTables: CEA, CTA, CPA
– Relational Tables in tBiomed & tBiodiv: CEA, CTA, CPA, RA, TD
– Entity Tables in tBiomed & tBiodiv: CEA, RA, TD

The target formats are:

– CEA: table name, column id, row id
– CTA: table name, column id
– CPA: table name, subject column id, object column id
– RA: table name, row id
– TD: table name

Now, we will present the results of Kepler-aSI for the various matching tasks in the second round
of SemTab 2024. These results highlight the strengths of Kepler-aSI, showcasing its encouraging
performance despite the range of challenges encountered.Summary of metrics for this round is in Table
1.

Table 1. Results for Round 2

F1 Score Precision Rank
TBiodiv-Large-Relational-CTA 0.741 0.741 1
TBiomed-Large-Relational-CTA 0.867 0.867 1

6 Conclusion & Future Work

To summarize and conclude, we have presented in this paper the second version of our Kepler-aSI
approach. Our system is participating in the challenge for the second time, it is approaching maturity
and achieving very encouraging performance. We have succeeded in combining several strategies and
treatment techniques, which is also the strength of our system. We boosted the preprocessing and
spellchecking steps that got the system up and running.

In addition, despite the data size, which is quite large, we managed to get around this problem by
using a kind of local dictionary, which allows us to reuse already existing matches. Thus, we realized
a considerable saving of time, which allowed us to adjust and rectify after each execution. We also
participated in all the tasks without exception, which allowed us to test our system on all facets, i.e.,
to identify its strengths and weaknesses.

We tackled the several proposed tasks. Our solution is based on a generic SPARQL query using
the cell contents as a description of a given item. In each round, despite the time allocated by the
organizers running out, we continued the work and the improvements, having the conviction that each
effort counts and brings us closer to the good control of the studied field.
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