
Scalable Table-to-Knowledge Graph Matching from
Metadata using LLMs
Nathan Vandemoortele1,∗, Bram Steenwinckel1, Sofie Van Hoecke1 & Femke Ongenae1

1Ghent University - imec, Technologiepark-Zwijnaarde 122, Gent, 9052, Belgium

Abstract
Addressing the challenge of interoperability when integrating and interpreting large datasets from
diverse sources is essential for businesses aiming to make informed, data-driven decisions. Therefore, the
2024 Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab) focuses on using
metadata, such as column names, to map tables to semantic concepts within standardized vocabularies
or Knowledge Graphs (KGs). The challenge involves mapping two datasets, one to the DBpedia ontology
and the other to a custom vocabulary.
Our approach begins with applying Retrieval-Augmented Generation (RAG) for a broad search of relevant
matches, ensuring scalability. We then refine these matches using a Large Language Model (LLM) with
Chain-of-Thought (CoT) prompting and Self-Consistency (SC). Finally, we combine the results using
Reciprocal Rank Fusion (RRF) to obtain a final ranking of the matches.
This method achieves hit rates of 62% (top 1) and 82% (top 5) for the first dataset, and 84% (top 1) and 98%
(top 5) for the second. The LLM’s strong semantic understanding and extensive knowledge base provide
significant advantages over traditional human labeling, which is often laborious and time-consuming.
Furthermore, the LLM’s zero-shot capability removes the need for additional task-specific training data,
making this solution applicable across various domains.
Despite limitations like computational costs and the need for well-defined concepts in the ontology or
vocabulary, our approach remains cost-effective compared to extensive human labeling. Moreover, we
leave room to trade performance for scalability if needed, pending further research.
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1. Introduction

In today’s data-driven world, many organizations and companies frequently face the challenge
of integrating and interpreting large datasets from various sources to streamline their business
operations and their ability to make data-driven decisions [1]. For example, consider a multina-
tional corporation that has recently acquired several smaller companies, each with a different
data management system. Merging such heterogeneous data sources while maintaining the
intrinsic semantic meaning of the available information is a difficult task for humans.
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table_name": ”≈", "table_columns": ["RANG", "Museum", 
"Stadt", "Facebook-Fans"]

Museum

RANG Name Stadt Fans

table_name:

table_columns:
table_cells:

…
locationName
location
locationCity
city
livingPlace

Vocabulary

Unavailable

Figure 1: Matching table metadata only, i.e., table and column names, to a vocabulary or ontology
without any access to table data. In this example, the column “Stadt” of the “Museum” table is matched
to the “locationCity” property within the given vocabulary.

One possible solution to this problem involves matching tables to standardized vocabularies or
Knowledge Graphs (KGs) [2, 3]. This process, known as semantic table linking or table matching,
aims to align data within tables with predefined concepts. The “Semantic Web Challenge on
Tabular Data to Knowledge Graph Matching (SemTab)1” has been hosted for several years at
the International Semantic Web Conference (ISWC) to stimulate the creation of such automated
semantic annotation systems. The goal is to automate the assignment of a DBpedia or Wikidata
entity to a whole column based on table data, assign a DBpedia or Wikidata entity to different
cells, infer relations between different columns where possible, or assign a KG class to an entire
table. One of the objectives of this year’s challenge2 is to map columns to semantic concepts in
a vocabulary or KG based solely on the information in the header of the columns, i.e. column
and table names. The objective is illustrated in Figure 1.

This automated mapping presents considerable challenges, as the true meaning of the table
relies on interpreting the data within the cells.

• For instance, a column named “ID” or “Value” provides little to no information about its
semantic meaning to help linking it to a concept in a KG.

• Many column names are ambiguous because they can have multiple potential meanings
depending on the context. For example, a column named “Date” could refer to, amongst
others, a birth date, transaction date, or event date.

• Tables can employ different naming conventions, languages, abbreviations, or terminolo-
gies. For instance, one dataset might use “CustID” while another uses “CustomerID” to
represent the same concept.

• As organizations are dynamic, new tables can be added and existing ones modified. This
dynamic nature requires continuous updates and maintenance of data structures, which
is resource-intensive if done manually.

• As organizations accumulate new tables, the scalability of semantic mapping becomes a
concern. Mapping metadata to vocabularies or KGs for potentially thousands of tables is
not humanly feasible, necessitating automated and scalable solutions.

We hypothesize that Large Language Models (LLMs) offer a promising solution to the chal-
lenges of semantic mapping when relying solely on metadata. Even in the absence of actual

1https://www.cs.ox.ac.uk/isg/challenges/sem-tab/
2https://sem-tab-challenge.github.io/2024/tracks/metadata-to-kg-track.html
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data content (e.g., due to restricted access), LLMs can leverage their intrinsic knowledge and
reasoning capabilities to tackle automated mapping problems. In this paper, we investigate
the zero-shot capabilities of GPT-4o3, a state-of-the-art LLM at the time of writing, for the
“Table Metadata to KG” task in the 2024 “Semantic Web Challenge on Tabular Data to Knowl-
edge Graph Matching” challenge. Zero-shot learning refers to the ability to transfer to an
unseen problem without new task-specific training data. To remain cost-effective, we adapt
an advanced Retrieval Augmented Generation (RAG) [4] solution that retrieves only the most
relevant information within the vocabulary or KG. This ensures that the generated responses
are contextually accurate while maintaining scalability. In this paper, we present the following
key contributions:

• While RAG solutions exist in the context of ontology matching, we are the first to
incorporate and apply (LLM-based) rerankers in this context.

• Our main innovation comprises a novel completion stage, where we uniquely combine
two prompting techniques, Chain-of-Thought and Self-Consistency, with Reciprocal
Rerank Fusion to find the best mappings.

• Our methodology efficiently scales to handle large and diverse datasets in a zero-shot
manner.

The remainder of this paper is as follows. We first discuss related work in Section 2. Next,
we present the table datasets and vocabularies provided by the SemTab organizers in Section 3,
followed by a detailed explanation of our methodology in Section 4. In Section 5, we present
the results. We conclude the paper in Section 6 and suggest additional paths for future work.

2. Related Work

Tasks regarding table topic annotation and column type annotation are closely related to the
general problem of semantic table understanding [5]. The SemTab challenge [6] has always been
formulated as an unsupervised table annotation problem. Systems like MTab [7], CSV2KG [8],
and DAGOBAH [9], which participated in the SemTab challenge in previous years, tackle three
main tasks in KG matching: creating cell entity annotations (CEA), column type annotation
(CTA), and paired column property annotations (CPA). These pipelines typically begin by
linking individual cell contents, such as the various column entries, to ontology entities, and
then predicting the most likely column type based on these linkages. To do so, these systems
need available cell values to be mapped to KG entities before column types can be identified,
which is not applicable in this context as here the actual table data is not available.

Given that we can only rely on metadata information for the task addressed in this paper, the
related work methodologies that are applicable align more closely with ontology alignment
techniques. These can range from traditional string similarity methods [10] to semantic similar-
ity measures utilizing resources like WordNet [11]. WordNet is, however, designed for general
purposes and may not include specialized terms or jargon used in specific, custom vocabularies.
More recent work includes vector representations for semantic similarity, using, e.g., word2vec

3https://platform.openai.com/docs/models
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to get promising results in semantic textual similarity tasks [12]. Nowadays, also LLM-based ap-
proaches have achieved traction for tasks like ontology alignment [13], entity matching [14] and
subject annotation [15]. Since LLMs are trained on large data corpora, they can identify complex
relations and patterns between different objects in natural language, leading to more accurate
matching. LLMs demonstrate their effectiveness to improve metadata matching performance,
either through additional fine-tuning on table-based tasks [16] or without fine-tuning [3], and
show how contextual information, such as the dataset description, can be incorporated in an
LLM prompt to match a vocabulary to a table’s column topics [17]. This last task is similar to
the one we are trying to solve in this paper. However, providing the full vocabulary as context
within each prompt would not be cost-effective at scale. To this end, RAG pipelines have been
proposed [18, 19], though they have not yet been applied in this specific context. Furthermore,
advanced prompt optimization strategies remain largely unexplored.

3. Metadata Datasets

Two datasets were provided in the challenge, which both contained a vocabulary on the one
hand and table metadata (i.e., table and column names) for multiple tables without the actual
cell data on the other hand:

• Dataset 1 consists of metadata from a selected set of HTML-based tables that can be
found on the web, and needs to get mapped to a subset of the DBpedia ontology4. The goal
is to map each table column to a corresponding ontology property. While the ontology is
hierarchically structured, it is treated as a simple vocabulary of properties, each defined
by labels and short descriptions, with no consideration of the relationships between them.
In total, metadata for 77 web tables were provided, of which 141 columns needed to be
mapped. The vocabulary consists of 2881 different properties.

• Dataset 2 contains a set of tables, available in a database accessible for public use.
The metadata of these tables needs to be mapped to a custom vocabulary with clear
descriptions. However, the vocabulary is not derived from an existing publicly available
KG. The goal is, again, to map each table column to one vocabulary item. This dataset
contains metadata for 75 tables, of which 1181 columns needed to be mapped, and has
1181 items in the vocabulary.

4. Methodology

Our architecture adapts an advanced RAG solution with a novel LLM-based completion stage.
RAG is a technique used to incorporate new knowledge into LLMs through in-context learning
(ICL), such as a vocabulary or a knowledge graph (KG). It promises a scalable approach by
retrieving only relevant information, thereby significantly driving down costs. ICL enables
LLMs to learn from examples within the context window without altering their weights.

Our solution’s two-stage pipeline is schematically visualized in Figure 2 and consists of
a retrieval stage and a completion stage. In this section, we explain each component of the

4http://dbpedia.org/ontology/
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pipeline step by step. You can find the prompt templates used in the “appendix” directory of
our GitHub repository: https://github.com/predict-idlab/Meta2Concept
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Figure 2: Overview of the two-stage methodology composed of a retrieval and completion stage after
an initial preprocessing step. The hexagonal knot and lama icon refer to the OpenAI and Llama models,
respectively.

4.1. Preprocessing

Both tables and vocabularies can vary in size, language, and quality. For example, the descrip-
tions of the provided vocabulary items can be rather short (see Section 3), or the provided table
metadata can contains abbreviations or be multilingual (see introduction). To address these
variations, a preprocessing step is applied to both the vocabulary and metadata as a first step as
detailed in the following subsections.

4.1.1. Enriching of vocabulary

An item within a vocabulary represents the information of a single concept or property, e.g., a
DBpedia property label and its description for the first dataset. We ask GPT-4o to translate the
item labels to English, fix grammar mistakes, convert proper names to their type (e.g., Harelbeke
becomes → City (Harelbeke)) and write acronyms in full. Closed-source LLMs like GPT-4o
enrich the embedding model in the next stage, as they are more knowledgeable and frequently
updated with the latest information. We process the vocabulary in chunks of 100 items per
prompt, which is overall inexpensive and enables the use of GPT-4o. In most cases, this results
in property labels becoming self-explanatory. Below is an example of vocabulary enrichment
using GPT-4o:

Input: prompt(label=‘ept itm’)
Output: ‘European Poker Tour (EPT) In The Money (ITM)’

This helps generate more accurate embeddings for the next stage. In this case, you might also
find matches closer to poker, tours, or money.

Item descriptions are more fine-grained representations of the label in semantic space. How-
ever, for these descriptions to be effective as embeddings, they must be specific and not open to
interpretation. For example, “season” is simply described as “season”, however “season” can
refer to the yearly seasons but also television seasons, or sports seasons. Attempting to assign
one interpretation without knowing the ground truth could skew the embeddings vector in a

https://github.com/predict-idlab/Meta2Concept


specific direction, whereas it might be preferable to leave such terms undefined at this stage.
This problem is specific to Dataset 1, hence, we focus on enriching and utilizing only its labels.
For Dataset 2, we use and retain the original descriptions, as they are deemed to be of high
quality.

4.1.2. Enriching of table metadata

The metadata consists of a table name and column names, one or more of which need to be
mapped. We ask GPT-4o to transform the column and table name into a sentence in the form:

{column} {relation} {table_name}

No other information about the other column names in the table is included. Furthermore,
we ask GPT-4o to translate words to English, fix grammar mistakes, convert names to their type
and write acronyms in full, similar to what we did with the vocabulary labels. The following is
an example of table metadata enrichment using GPT-4o:

Input: prompt(column=‘Height (m)’, table_name=‘Mountain’)
Output: ‘Height in meters of a mountain’

4.2. Retrieval Stage

Figure 3 illustrates the Retrieval Stage. It consists of an advanced RAG solution including an
embedding step and a reranking step, both of which will be further explained in the subsequent
subsections.
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What is the best description of column {column} in the 
table {table_name} with columns {table_columns}?

Table

Query
Enrichment

Embedding
Model

Vocabulary

Item 
Enrichment

{item 1}
{item 2}
{item 3}
{item 4}
{item 5}
{item 6}
{item 7}

Query 
Embedding

Similarity
Search

Top-k 
matches Rerank

[2] > [1] > [3] > [4] > …

RankGPT 

Query
Preprocessing

Embedding
Model

The following are descriptions related to the query {query}
[1] {item 1}
[2] {item 2}

…
Rank the descriptions based on their relevance to the query

Prompt

Figure 3: Detailed overview of the retrieval stage: Vocabulary items are enriched with an LLM and
embedded with an embedding model, then stored. Table metadata is embedded similarly to create
query embeddings. A similarity search retrieves the top-k matches for the query embedding, which are
reranked by RankGPT based on relevance.

4.2.1. Embedding model

Dense embeddings provide a fast way to retrieve relevant documents at scale. The main idea is
to perform a coarse search for the relevant items within the vocabulary or KG at a low cost,
which are then refined further downstream.



The process begins with indexing the enriched vocabulary, where it is chunked by item and
embedded using a dense embedding model, as shown in Figure 3. We use text-embedding-3-
large (OpenAI)5, which converts sentences into 3072-dimensional vectors. These embeddings
are stored and can be reused for comparison with each new query. Next, the enriched table
metadata is embedded similarly to generate query embeddings. We then perform a similarity
search, comparing the embedded query with each item in the vocabulary using cosine similarity,
which can be expressed as:

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑖𝑡𝑦 = 𝑑𝑜𝑡(𝐼 𝑡𝑒𝑚𝑣𝑒𝑐𝑡𝑜𝑟, 𝑄𝑢𝑒𝑟𝑦𝑣𝑒𝑐𝑡𝑜𝑟)

Since the vectors are normalized, there is no need to divide by their lengths.
Finally, we rank the items according to the cosine similarity and retrieve the top 150 matches

to be reranked. This number was chosen based on cost considerations. Ideally, this number
should be empirically validated using a validation set; however, in this challenge, we were
provided with only 10 samples for Dataset 1 and none for Dataset 2. Table 2 indicates the
number is sufficient for Dataset 1 with a 100% hit rate but may be inadequate for Dataset 2,
which has a 95% hit rate. This likely stems from a larger vocabulary and a higher likelihood
of encountering similar items. We believe there is a probable relationship between the size
of the dataset and the optimal number of retrieval candidates, which we have yet to evaluate
thoroughly.

4.2.2. Reranker

The top 150 candidates identified in the previous step show high semantic similarity with the
given table query, but their order is highly dependent on the embedding model. Embedding
models have several drawbacks: both the vocabulary item and query are embedded indepen-
dently, resulting in some loss of information. They are also often trained for specific tasks and
therefore require further fine-tuning to achieve the best results. This goes against our goal of
making the pipeline generically reusable. Furthermore, they do not have the same knowledge
or reasoning capabilities of an LLM.

This is where LLM-based rerankers come in. These rerankers find logical connections
between several “passages” (our vocabulary items) and a query simultaneously, albeit at a
higher computational cost, which is why we only use it on the top-ranked results in order
to improve scalability. We use RankGPT [20], a library that provides a prompt template to
transform LLMs into reranking agents. We selected Llama-3-70B (Meta), an open-weight LLM,
to ensure cost-effectiveness given the size of our datasets. We utilized RankGPT’s permutation
generation with a sliding window (step size of 10 and window size of 20) to limit the number of
candidates needing reranking in each prompt. Moreover, this measure decreases the prompt
size and improves performance by mitigating context length sensitivity. RankGPT’s sliding
window is applied from back to front, allowing items to be promoted in rank but not demoted
outside the window size. The reranking of vocabulary items is determined by their relevance to
the following new query:

5https://platform.openai.com/docs/models/embeddings
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Query:
What is the best description of column {column} in
the table '{table_name}' with columns {table_columns}?

Notice that this query now uses all the metadata of the table. Similarly, items now contain all
the information of the original vocabulary, i.e. the labels with their descriptions, allowing for
a more fine-grained ranking. We no longer use the information obtained during enrichment
because the clean-up step in preprocessing could introduce errors that may confuse the LLM.
However, for Dataset 1, we found the descriptions to be poor, which is why we included the
domain and range based on the properties provided by DBpedia6. If the domain is an “owl:Thing”
or the range is a datatype, the field is left empty. This results in the following items:

Item:
Dataset 1: [<domain>, <property>, <range>] <description>
Dataset 2: <label>, <description>

After reranking the items, we retrieve the top 30 candidates for further processing. This
number was chosen based on similar limitations described in the initial ranking.

4.3. Completion Stage

Figure 4 illustrates the Completion Stage, which aims to make a final ranking of the retrieved
candidates and will be further explained in detail in the following subsections.
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Rerank Given a table {table_name} with columns
{table_columns}, rank the five best 

descriptions for the column {column}?
[1] {item 1}
[2] {item 2}

…

Prompt

Analysis: <reasoning>
[4], [10], [13], [1], [6]

+

Reciprocal
Rank
Fusion

Given a table {table_name} with columns: 
{column 1: matched description},
{column 2: matched description},

…
Your task is to determine which of the following is 

the best description for the column {column} 
given the context of the other columns?

[1] {item 1}
[2] {item 2}

…
You must select one matching description

Prompt

Analysis: <reasoning>
[1]

Self-
consistency

Figure 4: Detailed overview of the completion stage: An LLM is prompted using CoT-SC to retrieve
multiple rankings, which are then fused using RRF. The process includes a second prompt to ensure
column descriptions are consistent across the entire table.

4.3.1. Top-k matching

To obtain the final top 1 and top 5 matches, which is the goal of the challenge, we ask GPT-4o
in zero-shot setting to rank the top 5 best vocabulary items out of the top 30 candidates. We

6e.g. https://mappings.dbpedia.org/index.php/OntologyProperty:ReleaseDate
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selected GPT-4o (OpenAI) as the LLM of choice as it is the most capable model based on MMLU
and Chatbot Arena scores, according to lmsys.org7.

We use Chain-of-Thought (CoT) [21, 22] with Self-Consistency (SC) [23] to retrieve mul-
tiple rankings, which are then fused using Reciprocal Rank Fusion (RRF) [24]. CoT-SC is a
well-known technique for improving classification task performance by sampling multiple
reasoning paths (n=10), i.e. repetitively performing the same task, with a high temperature
(T=0.7), i.e. encouraging exploration, and taking the consensus of the answers from an LLM.
During each resampling, the vocabulary descriptions are randomly shuffled to avoid the ‘lost
in the middle’ problem, where the LLM tends to be biased toward the beginning or end of a
document. We instruct the LLM to generate structured output in free text format and extract
the answers using regular expressions.

RRF is a method in information retrieval for combining the results of multiple ranked lists.
The core idea behind RRF is to leverage the rankings provided by different retrieval models and
fuse them into a single, more robust ranking. The formula for RRF can be expressed as follows,
where 𝑑 is a document in a set of documents 𝐷 and 𝑟 is the rank in a set of rankings 𝑅:

𝑅𝑅𝐹𝑠𝑐𝑜𝑟𝑒𝑑∈𝐷 = ∑
𝑟∈𝑅

1
𝑘 + 𝑟(𝑑)

, where k=0.01 (a tuned parameter)

4.3.2. Table matching

The methodology is further extended to improve the results of the second dataset. As visualized
in Figure 4, the completion stage includes a second prompt containing the descriptions of the
columns of the entire table identified earlier. The aim is to ensure that the column descriptions
are consistent with one another, which potentially reveals a pattern. For instance, it is clear
from the other descriptions that the table relates to a visitor visiting a webpage, this knowledge
therefore reduces ambiguity when choosing between vocabulary labels “UserID” or “VisitorID”
when mapping the column “ID”.

Although the same CoT-SC process can be applied here, we limit it to one inference with a
low temperature (T=0.0), focusing only on improving the top 1 out of the top 5 descriptions
identified in the previous step. This limitation is due to the significantly longer prompt, and we
expect the gains to be marginal.

4.4. Non-contextual Methodology

In addition to the two-stage pipeline, we also present a non-contextual method. This approach
tests the LLM’s ability to reason and recall properties from parametric memory rather than
from context. As illustrated in Figure 5, we simply ask GPT-4o to rank the top 5 fine-grained
properties from the DBpedia ontology and filter out those not included in the given subset. It
has been shown that top LLM models like ChatGPT and GPT-4 are pretrained on DBpedia data
[25]. Thus, we expect the non-contextual method to perform very well on Dataset 1. However,
this approach is not usable on unseen vocabularies or KGs, such as those in Dataset 2.

We prompted GPT-4o using SC (n=20) without CoT and combined the results with RRF.

7https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
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Figure 5: Detailed overview of the non-contextual methodology: An LLM is prompted using SC to
retrieve multiple rankings, which are then fused using RRF.

5. Results

Both datasets were evaluated using the Hit@k metric for 2 different 𝑘: 1 and 5. The Hit@k
metric indicates whether the true item appears in the first 𝑘 items of the sorted rank list. This
can be expressed as:

Hit@k = max
𝑖=1..𝑘

{
1, 𝑟𝑖 ∈ 𝑇
0, otherwise

in which, 𝑟𝑖 is the item ranked at position 𝑖, and 𝑇 is the set of items that are in the test set.
We take the average of this metric across the entire dataset, which is also referred to as the “hit
rate”.

The results of both the non-contextual method and our approach are summarized in Table 1.
Note that we did not evaluate the non-contextual method for Dataset 2, as it is not publicly
available and therefore should not have been included in the LLM’s training data. Addition-
ally, we provide the scores from the embedding model (text-embedding-3-large), during the
embedding phase of our method, as a baseline for comparison.

Table 1
Comparison of the baseline (text-embedding-3-large), contextual method, and our methodology for
Dataset 1 & 2.

Dataset 1 Dataset 2

Hit@1 Hit@5 Hit@1 Hit@5

Baseline 33% 52% 41% 72%
Non-contextual Method 75% 92% - -
Our Method 62% 82% 84% 98%

In Table 2, we provide a breakdown of performance across the different phases of the pipeline
for Datasets 1 & 2. The “# Items” row indicates the number of vocabulary items remaining at
the end of each phase. This also determines the metrics that we can evaluate.



Table 2
Performance metrics across different stages for Dataset 1 & 2.

Prepro-
cessing

Retrieval
Stage (em-
bedding)

Retrieval
Stage

(rerank)

Completion
Stage (top-k
matching)

Completion
Stage (table
matching)

Dataset 1 # Items 2881 150 30 5 –
Hit@150 – 95% – – –
Hit@30 – 75% 91% – –
Hit@5 – 52% 59% 82% –
Hit@1 – 33% 43% 62% –

Dataset 2 # Items 1181 150 30 5 1
Hit@150 – 100% – – –
Hit@30 – 96% 99% – –
Hit@5 – 72% 95% 98% –
Hit@1 – 41% 77% 83% 84%

6. Discussion and Future work

Our two-stage pipeline performed well, achieving top 1 and top 5 hit rates of 62% and 82%
respectively for the first dataset, and top 1 and top 5 scores of 84% and 98% respectively for the
second dataset. LLMs significantly outperform embedding models, achieving increases of 29%
and 43% for the top 1 ranking in the first and second datasets, respectively. The non-contextual
method achieved the highest score on Dataset 1, confirming that the DBpedia ontology is indeed
part of the original training data of the LLM. This suggests that the model formed a better
understanding of the properties during pretraining, possibly because they were seen in the
context of other documents, and/or is better at reasoning using parametric memory.

The results of our method show a high hit rate within the top 5 candidates, indicating that it
retrieves almost all relevant labels. However, the score of the top 1 candidate is lower. Analysis
suggests this is partly due to poor label definitions or subjective human preferences. For instance,
in Dataset 1, a human labeler might categorize a city as “location”, whereas our method might
specify “locationCity”. Moreover, based on the limited validation dataset, it is apparent that
human labelers do not consistently choose the most fine-grained property. This has shifted our
problem definition from identifying the “most fine-grained” property to “matching the human
labels” to maximize our score. For this reason, we did not explicitly instruct the LLM to find the
most fine-grained property.

We believe that the scores we report are generally understated. There is often a lack of
consensus among humans regarding the ground truth. Our observations from the limited
validation dataset suggest that, in some cases, the LLM’s choice may be preferable to the human
one. We aim to highlight these discrepancies, although we lack access to the definitive ground
truth. If the true objective is to identify the “most fine-grained” property, further improvements
could be achieved, such as refining the prompt, adding hierarchical relationships within the KG,
etc.

This issue highlights three key advantages over human labelers:



• Humans must be aware of all possible items in the vocabulary or KG, which is a difficult
task, whereas LLMs can ingest everything exhaustively.

• Our pipeline provides consistent mapping. While human labelers may have varying
preferences, our approach ensures uniform assignments from an independent expert.

• Table metadata is often filled with specialized jargon, LLMs can eliminate the need for
separate experts in each field.

We attribute this advantage to the strong semantic understanding of LLMs, specifically their
ability to extract meanings from context—i.e., howwords appear together in documents. Coupled
with a comprehensive knowledge base of memorized facts, which includes concepts of names,
places, and acronyms, giving them an edge over traditional embedding methods and, in some
respects, even human capabilities.

Another advantage is the ability of LLMs to transfer to unseen tasks in a zero-shot manner.
The two-stage pipeline removes the need for additional task-specific training data. In our tests,
few-shot approaches offered only marginal improvements, making zero-shot learning a more
practical and resource-efficient choice. This zero-shot capability also allows the pipeline to be
applied to other datasets. As shown in the second dataset, a well-defined vocabulary suffices,
making our solution applicable across other domains.

The use of LLMs is not without limitations. The accuracy of our approach is highly affected
by the quality of the descriptions and how well the column names represent the corresponding
table data. Some current mistakes stem from poorly defined descriptions or misleading column
names. If possible, providing a single row of each table as additional context to the LLM could
potentially go a long way to improve clarity and also benefit human labelers.

Table 3
Cost and token usage across different stages for Dataset 2

# Tokens (in/out) Cost per 1M
tokens
(in/out)

Total cost Model Inference
Platform

Preprocessing 16K/18K $5.0/$15.0 $0.35 GPT-4o OpenAI

Retrieval Stage
(embedding)

125K $0.02 $0.0025 text-embedding-3-
large

OpenAI

Retrieval Stage
(rerank)

22.7M/1.4M $0.59/$0.79 $14.50 Llama-3-70B-
Instruct

DeepInfra

Completion Stage
(top-k matching)

3.6M/939K $5.0/$15.0 $32.09 GPT-4o OpenAI

Completion Stage
(table matching)

555K/96K $5.0/$15.0 $4.22 GPT-4o OpenAI

ALL 27.0M/2.5M – $51.16 – –

Cost remains another important factor. Table 3 provides a breakdown of the number of
input and output tokens and their associated costs for each phase within our two-stage pipeline
for Dataset 2, which has the highest token count of the two datasets. The cost of an LLM is
determined by the volume of tokens provided (input) and generated (output), each at different
price points. Running our solution for Dataset 2 is estimated to be around $51 in total, or 4.33¢
per mapping of a column, with costs scaling linearly. This indicates that the function of a



retrieval stage in this approach, as opposed to providing all items in the vocabulary or KG to
the completion stage directly, is a very cost-efficient measure.

There are, however, opportunities to further reduce the cost of the provided pipeline and
research the balance between cost and accuracy. For instance, during the rerank phase, one
can further adjust the step and window size or use less expensive models for lower-ranked
embeddings. During the completion stage, the self-consistency parameter can also be easily
tweaked without making structural changes to the architecture. While these are stopgaps to
the current limitations, the cost and performance of foundation models are set to continue to
improve in the near future.

Looking forward, future research could further improve our pipeline at various stages.
Embedding-based rankings could benefit from a hybrid approach that combines sparse re-
trieval models with dense models to help identify exact matches, such as names, IDs, and
numbers. One could also suggest more fine-grained domain and ranges based on the usage of
the property in axioms and data, or even towards the specific task or context at hand. Further-
more, we currently see an opportunity to make LLM-based rerankers more scalable through
new algorithms or the aforementioned strategic use of cheaper LLMs. Additionally, their perfor-
mance can potentially be improved by combining SC with RRF. As we look ahead, new solutions
will need to be devised to maintain scalability if the vocabulary changes at test time.

The holy grail is still to embed knowledge into the LLM itself and retrieve the items from
parametric memory. The advantages of this approach are revealed by the non-contextual method
in this paper, where a single and simple prompt, together with a post-processing operation,
results in very accurate table annotations. This solution is, however, still only applicable for
DBpedia, as the GPT-4o model has the DBpedia properties stored in its parametric memory.
Nonetheless, injecting new knowledge into LLMs through fine-tuning remains a challenging
task and recent advancements such as Knowledge-basedModel Editing are still in their emerging
stage [26].
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