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Abstract
Tabular data is one of the most common data sources on the internet and is widely used in various data analytics
tasks. Identifying semantic concepts within tables is often a critical component of these pipelines, yet it remains a
challenging task to automate. To address this problem, we present RAGDify, a large language model (LLM)-based
system designed for the Cell Entity Annotation (CEA) task. Our system employs a three-step pipeline inspired
by Retrieval-Augmented Generation (RAG) and advanced reasoning techniques: (1) retrieving context-aware
candidate entities, (2) engaging in a debate-like evaluation to compare top candidates, and (3) applying chain-of-
verification-inspired prompting to validate the final entity match. We propose RAGDify as a solution for the
SemTab’25 challenge, targeting the key challenges inherent in automating the CEA task.
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1. Introduction

In recent years, we have witnessed a significant increase in the availability and dissemination of data,
particularly tabular data [1]. Many processes have become data-driven, requiring large volumes of
structured data to train algorithms or support decision-making. Tabular formats such as CSV have
become the de facto standard for representing and exchanging data due to their compact, human-
readable structure.

Automatically processing tabular data is a fundamental step in a wide range of applications, including
schema matching, entity linking, question answering, and knowledge graph construction. A common
approach to facilitate this processing is to link table elements, such as cells, or columns, to entities
and concepts within a Knowledge Graph (KG) or ontology. This linkage creates a semantic layer that
enables higher-level reasoning and integration across heterogeneous datasets—a process commonly
referred to as Semantic Table Interpretation (STI) [2].
Despite its widespread use and simplicity, the tabular format poses several challenges. Tables often

lack explicit contextual information, exhibit semantic ambiguities, and are susceptible to inconsistencies
and noise in their data. Consequently, automating the semantic interpretation of tables remains an
open and complex research problem [3].

One promising direction to address these challenges is the incorporation of Large Language Models
(LLMs) into the Semantic Table Annotation pipeline [4]. LLMs, trained on vast amounts of textual data,
have demonstrated impressive abilities in solving tasks beyond their specific training objectives, even
in settings with limited annotated data (few-shot learning [5]) or no task-specific data at all (zero-shot
learning [6]).
However, directly applying LLMs to STI tasks introduces several key obstacles. First, LLMs are not

explicitly trained on structured KG data, and thus struggle with complex entity disambiguation tasks
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where numerous KG entities share identical or highly similar surface forms. Second, the inherent lack
of context within tabular structures exacerbates the difficulty of semantic interpretation. Third, LLMs
are prone to hallucinations, producing confident but factually incorrect outputs, which can severely
undermine the accuracy of entity annotations [7].
To mitigate these challenges, a Retrieval-Augmented Generation (RAG) architecture has emerged as

a promising solution [8]. RAG architectures enhance LLMs by grounding their responses in external
knowledge, limiting the candidate space to a set of relevant entities retrieved from a KG, and guiding
the LLM through the entity matching process. This retrieval-augmented approach not only constrains
the model’s generation space but also improves its factual reliability.
Moreover, integrating advanced reasoning techniques has shown potential in boosting LLM fac-

tual accuracy and decision-making capabilities. Recent advancements include multi-agent debate
frameworks [9], chain-of-thought prompting [10], self-consistency mechanisms [11], and chain-of-
verification [12] strategies that iteratively validate generated outputs against factual sources. These
reasoning techniques have been effective in guiding LLMs through complex multi-step tasks, fostering
both robustness and interpretability.
In this paper, we present our approach to the Cell Entity Annotation (CEA) task for the SemTab’25

Challenge—RAGDify. Our system leverages LLMs within a RAG-based architecture, enriched with
a reasoning mechanism inspired by multi-agent debate, self-consistency, and chain-of-verification
techniques.

The remainder of this paper is organized as follows: Section 2 provides an overview of the task and
foundational approaches; Section 3 details our proposed methodology; Section 5 reviews related work
in the field; finally, Section 6 highlights key challenges, summarizes our contributions and limitations,
and outlines directions for future research.

2. The Task

2.1. Overview of the Challenge

The SemTab challenge started in 2019 with the goal to promote research in STI and provide a venue for
benchmarking different solutions [4]. Over the years a wide range of solutions have been suggested for
SemTab tasks. With the emergence of large language models (LLMs), special interest arose, leading
to a dedicated STI vs. LLMs Track in 2024, and in 2025 all participants are expected to use LLM-based
methods, either via fine-tuning or RAG.
We focus on the CEA task, which involves linking each table cell to its corresponding entity in

a knowledge base (e.g., a KG or ontology). Figure 1 illustrates this process. Systems are evaluated
using standard precision, recall, and F1-score metrics. In addition, the challenge requires that solutions
address several key challenges, such as disambiguation, homonymy, alias resolution, NIL detection,
noise robustness, and collective inference, to reflect the complexities of real-world table data.

2.2. MammoTab Track and Dataset

We competed in the MammoTab track, which leverages the most recent version of the MammoTab
dataset [13]. MammoTab comprises 870 heterogeneous tables—sourced from Wikipedia, collectively
contains 84, 907 verified cell–entity annotations. This benchmark simulates the challenges of real-world
table interpretation: tables lack explicit schema definitions, and cell contexts exhibit varying degrees of
noise, ambiguity, and sparsity. For the MammoTab track, Wikidata (v. 20240720) serves as the target KG.

3. Methods

The RAGDify system formulates table‐to‐knowledge‐base matching as a four‐stage retrieval‐generation
pipeline (Figure 2), wherein each stage leverages a large language model (LLM) to balance high recall
with precise disambiguation.



col0 col1 col2 col3 col4 col5
2012 California 33 Independent Bill Bloomfield 146,660 2nd

2012 Colorado 5 Independent Dave Anderson 53,318 2nd

California State Route 33 (Q662907), highway in 
California

California's 33rd congressional district (Q225706), U.S. 
House district in western suburbs of Los Angeles, CA

2024 California Proposition 33 (Q130614755), 2024 
California referendum

CERRO COLORADO 5 (Q105970601), archaeological 
site in Cordoba Province, Argentina

Grand Canyon (Q118841), steep-sided canyon carved 
by the Colorado River in Arizona, United States

Colorado's 5th congressional district (Q5148668), U.S. 
House district centered on Colorado Springs, CO

Figure 1: Illustration of the CEA task. Candidate entities from the Wikidata knowledge graph are retrieved for
the cell value “California 33” (bottom left) and “Colorado 5” (bottom right). The correct entities are highlighted
in blue.
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Figure 2: Overview of the RAGDify pipeline for cell entity annotation on Wikidata: (1) LLM-driven table
cleansing; (2) candidate retrieval via Elasticsearch using exact match, LLM-rewritten contextual queries, and
fuzzy lookup; (3) debate-style LLM ranking with three supporting arguments; (4) final LLM-based validation
across cell, column, and table contexts, including NIL detection.

In the data cleansing stage, raw CSV tables are ingested and lightly cleaned via an LLM prompt that
corrects typographical or formatting errors, unifies casing, and removes noise, e.g., stray punctuation
or outlier tokens, while preserving the original row and column structure. This preprocessing yields a
consistent set of cell values for downstream retrieval.

The candidate generation stage employs three sequential retrieval strategies over a full‐text inverted
index of Wikidata entity labels and descriptions, implemented in Elasticsearch. First, we perform an
index lookup using the cleaned cell string. Second, regardless of whether the first lookup succeeded,
we invoke a few‐shot LLM prompt to reformulate the query by incorporating column and table meta-
data—capturing aliases, synonyms, and contextual nuances. These results are added to the candidate
list. Finally, if neither of the first two strategies returns any results, we execute a fuzzy search requiring
at least 75% string similarity. To bound LLM context and reduce latency, tables with more than ten rows



Debate and Select
URI: http://www.wikidata.org/entity/Q225706
Arguments:
1. The candidate label “California’s 33rd congressional 

district” exactly matches the cell value “California 
33,” indicating the same federal electoral district.

2. Column 2 (“Independent”) and Column 3 (“Bill 
Bloomfield”) refer to the party and representative of a 
congressional district, consistent with this URI.

3. The population (146 660) and rank (“2nd”) in Columns 
4–5 align with demographic metrics typically reported 
for congressional districts, reinforcing the match.

Verification
Verification: yes
Winning candidate URI: http://www.wikidata.org/entity/Q225706

Candidate Generation
Direct lookup:
California State Route 33 (Q662907), California’s 33rd 
congressional district (Q225706), Riverside County 
(Q108111), and 2024 California Proposition 33 
(Q130614755)
LLM-reformulated query: California 33 district:
California’s 33rd State Assembly district (Q5020024), 
California’s 33rd congressional district (Q225706), 
California’s 33rd State Senate district (Q5020025), and 
San Joaquin County Sheriff’s Department (Q7414388).

Figure 3: Illustrative example of RAGDify’s CEA pipeline for the cell value California 33. Left: Candidate
Generation combining a direct lookup and few-shot LLM reformulation to assemble the candidate set. Right:
Debate & Select prompt with URI selection and supporting arguments. Bottom: The LLM answer to the
verification prompt to confirm the final match against the verification questions.

are truncated to the ten rows nearest the target cell.
In the candidate ranking stage, we employ a debate‐style prompting strategy in which the LLM

receives a set of candidates and is asked to nominate the most plausible entites, accompanied by
three concise, evidence‐based arguments referencing the cell value and its surrounding context. This
argumentative framing, rather than relying solely on similarity scores, encourages the model to surface
the strongest semantic match. To balance cost and accuracy, the debate can be run over the entire
candidate set or restricted to a top‐𝑘 subset, and it may be iterated for multiple rounds, with each
iteration refining the argumentation and narrowing the pool until a final winner emerges.
Finally, the validation stage tasks the LLM with targeted questions probing the chosen entity’s

consistency with the original cell value, compatibility with column and table context, and distinction
from alternative candidates, including an explicit NIL option. Based on these responses, the system
either confirms the selection or revises it and may iterate the validation prompts for several rounds
until a stable, final annotation is produced. Figure 4 shows the key LLM prompt templates used in the
pipeline’s candidate generation, candidate ranking, and validation stages. Figure 3 illustrates the main
stages applied to the CSV example from Figure 1.
This pipeline tackles all core CEA challenges in one sweep: by normalizing and denoising cells up

front, it achieves noise robustness; its three‐stage retrieval (exact, contextual reformulation, fuzzy)
and debate‐style ranking enforce both disambiguation and homonymy resolution using column and
table level cues; contextual query rewriting surfaces aliases and nicknames; finally, because both
reformulation and validation draw on neighboring cells, our approach produces coherent, table-wide
annotations.

Implementation Details The proposed pipeline is LLM‐agnostic and can be adapted with minimal
modifications to a variety of models. Given the relatively large size of the test set (see Section 2.2), we
prioritized runtime and cost efficiency. To this end, during ranking we generate supporting arguments
only for the top-ranked candidate, avoiding per-candidate debates, and perform a single verification
step. For our experiments, we chose OpenAI’s GPT-4.1 nano due to its favorable cost-to-performance
ratio.
All experiments were conducted on an Ubuntu 20.04.6 Linux server equipped with two Intel Xeon

Gold 6326 CPUs (16 cores per socket, 2 sockets, 64 threads total, 2.90 GHz) and 256 GB of RAM. The
entire pipeline, including the LLM client, retrieval modules, and validation logic, was containerized
using Docker and orchestrated via Docker Compose. Elasticsearch was deployed in a dedicated Docker
container, and GPT API calls were parallelized with a 4-thread pool to maximize throughput while



Candidate Generation

Given a CSV table and a target cell 
({row_id}, {col_id}, {value})

- Generate a search query for 
Wikidata. Few-shot examples: 
{examples}

- Consider abbreviations, 
synonyms, and variations.

Output only the search text

Debate and Select

Given a target cell in a CSV table 
({row_id}, {col_id}, {value}) and a list of 
candidate entities ({candidates}) from 
Wikidata

- Select the best match for the cell, 
provide at least 3 strong arguments 
supporting your choice  

- Consider the table context 

Output format:
URI: <candidate URI>  
Arguments: <arguments>

Verification

Re-evaluate the selected candidate using 
the table, candidate list, and arguments

- Check fit with cell value, column 
values, and table context

- Revise if a better candidate exists; 
otherwise confirm the choice. Use NIL 
if no candidate fits

Output format:
Verification: <yes/no>  
Winning candidate URI: <candidate URI 
or NIL>

Figure 4: Key LLM prompt templates used in RAGDify’s CEA pipeline. Left: Candidate generation prompt,
which presents the CSV context and instructs the model to suggest a concise search string for the Wikidata
index. Middle: Debate and select prompt, which lists candidate URIs with labels and descriptions and asks
the LLM to choose one (or more) candidates that best match the cell, with three supporting arguments. Right:
Verification prompt, which provides the selected candidate, its arguments, and the full candidate list, then asks
the LLM to reconsider its choice by probing cell-, column-, and table-level consistency and to confirm or revise
the final URI (or choose NIL).

respecting rate limits. End-to-end processing of the SemTab’25 test set required approximately 26 hours
and incurred US$26.60 in API costs.

4. Results

Table 1 shows the SemTab’25 results on the MammoTab track.

Table 1
Performance comparison on the MammoTab benchmark from the official leaderboard [14].

Model Precision Recall F1 Score
RAGDify 0.603 0.603 0.603
ADFr 0.758 0.758 0.758
ditlab 0.549 0.549 0.549
Kepler-aSI 0.403 0.157 0.226

5. Related Work

Tabular data linking to a KG has been studied for over two decades. Early STI pipelines typically
comprised three sequential stages: pre-processing (cleaning and denoising), candidate generation via
keyword- or schema-based lookup, and iterative disambiguation to resolve noise and ambiguity [3].
Initial LLM-based approaches to CEA focused on learning joint embeddings of table cells and KG

entities. TURL [15] extends TinyBERT with a structure-aware visibility matrix, jointly optimizing
masked language modeling and masked entity retrieval objectives. TableLlama [16], a decoder-only
variant of Llama 2-7B, employs LongLora to accommodate extended contexts (up to 8, 192 tokens) and
is instruction-tuned on a large TableInstruct corpus for CEA and other table tasks. TAPAS [17] adapts
BERT with table-specific position embeddings and aggregation heads to perform both cell classification
and entity linking, achieving strong in-domain performance without external KG queries.
Replacing or unifying traditional STI stages, prompting over large generative models has become

popular. TSOTSA [18] leverages GPT-based prompts for candidate retrieval and ranking; Kepler-aSI [19]
integrates SPARQL query outputs into LLM inference to refine entity selection; CitySTI [20] applies
end-to-end prompting across all STI phases; and Adwan [21] demonstrates a retrieval-augmented



generation (RAG) pipeline enhanced with chain-of-thought and self-consistency prompting for robust
table metadata linking.

While joint-representation models like TURL, TAPAS, and TableLlama excel at in-domain embedding
efficiency, they often require substantial labeled data or fine-tuning. Prompting-based methods simplify
deployment and achieve strong zero-shot performance but can incur higher API costs and latency. Our
RAGDify system builds on these paradigms by combining LLM-driven query reformulation, debate-style
ranking, and explicit validation to deliver a versatile, cost-effective solution across all CEA challenges.

6. Conclusions

This paper has presented RAGDify, a retrieval-augmented generation pipeline for cell entity annotation.
Our approach combines four key components: (1) lightweight LLM-driven table cleansing to correct
typos and normalize values; (2) multi-stage candidate retrieval via exact match, contextual (LLM-
rewritten) queries, and fuzzy lookup to maximize recall; (3) debate-style ranking that prompts the
LLM to select a single top candidate with supporting arguments; and (4) explicit validation that probes
cell-, column-, and table-level consistency and allows for NIL assignments. By design, RAGDify is
LLM-agnostic, adapts with minimal changes to different model families, and maintains cost efficiency
through a single debate round and one verification step.

Future Work Several directions merit further exploration. First, a controlled study of debate and
verification depths, varying the number of argumentation rounds and follow-up checks—could identify
the optimal balance between annotation accuracy and computational cost. Second, integrating a learned
semantic retrieval layer (e.g., dense embeddings) promises to boost candidate recall beyond syntactic
lookup without a significant runtime penalty. Third, access to a high-quality gold annotation set for the
SemTab’25 benchmark or another comparable dataset would enable rigorous evaluation and targeted
fine-tuning. Such a dataset would also allow a detailed analysis of how each component (retrieval,
debate, verification) contributes to overall performance, potentially closing the gap with fully supervised
methods.

Limitations Despite its advantages, the proposed pipeline has several limitations. First, it relies on
syntactic search over an Elasticsearch index, which may limit recall; integrating a robust semantic
search could substantially improve retrieval performance. Second, the method is entirely prompt-based,
primarily zero-shot, to maintain dataset agnosticism; this design choice can be suboptimal compared to
task-specific fine-tuning, which typically yields higher annotation accuracy. Third, to control cost, the
debate verification mechanism is limited to a single round; extending it to multiple stages could further
enhance matching quality.
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