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Abstract

This paper presents a robust approach for Cell Entity Annotation (CEA) in the ISWC 2025 SemTab Challenge
MammoTab task, where tables must be linked to Wikidata entities without gold labels. We propose a multi-stage
QID candidate generation pipeline combined with an iterative process alternating between Cell Type Annotation
(CTA) and CEA. Candidate sets are refined through both the original and transposed table orientations, with
final candidates taken as the union of both to leverage complementary contextual cues. We further introduce
unsupervised evaluation metrics—consistency and entropy—that enable performance estimation and iteration
control without labeled data. Experiments on 84,907 entities and 3,576 columns show that our method improves
label coverage and semantic coherence, with the best-selection strategy achieving the highest scores. The results
demonstrate that multi-orientation candidate generation, combined with iterative refinement and unsupervised
evaluation, offers a practical and accurate solution for large-scale, label-free entity linking in tabular data.
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1. Introduction

In recent years, the rapid development of Large Language Models (LLMs) has enabled the understanding
of not only text but also multiple modalities such as images and tables. Tabular data, in particular,
exhibit a high degree of structural clarity while often lacking explicit column names or contextual
information, making it challenging to accurately capture their intended meaning. Understanding the
semantics of table data plays an important role in data integration, knowledge discovery, information
retrieval, and downstream decision-making tasks [1, 2, 3].

Among research initiatives that address these challenges, SemTab provides an internationally rec-
ognized benchmark specifically designed for the semantic interpretation of cell contents and table
structures by linking them to knowledge bases [4]. In the ISWC 2025 SemTab Challenge, the MammoTab
task [5] focuses on Cell Entity Annotation (CEA) as a primary objective. CEA refers to the entity linking
task of associating the content of each cell with a Wikidata QID [6], which requires deep semantic
understanding beyond simple string matching.

The challenge evaluates systems not only by F1 score, but also across multiple complex and realistic
dimensions, including:

« Robustness to noise and ambiguity (Noise Robustness, Disambiguation, Alias Resolution, etc.)
« NIL Detection (identifying cases where no corresponding entity exists)
+ Collective Inference (leveraging correlations with other cells and columns for reasoning)

These require strategies that consider the semantics of the entire table, rather than improving accuracy
at the single-cell level alone.
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In this work, we propose a multi-stage QID candidate generation strategy combined with an iterative
process alternating between Cell Type Annotation (CTA) and CEA, aiming to achieve both high
accuracy and reduced noise. In particular, NIL detection requires minimizing noise during the candidate
generation phase [7]. Our approach applies CTA [8] and CEA in a loop to mutually reinforce the CTA
and the selection of QID candidates. Furthermore, to maximize the benefits of collective inference, we
utilize both the original table and its transposed form, thereby capturing semantic relationships along
both rows and columns.

Recent studies have shown that GPT-based models can be effective for SemTab tasks [9]; thus, we also
explore the automatic estimation of column names using ChatGPT. Moreover, since no development set
is provided for this task, unsupervised methods for performance estimation are necessary. We propose
calculating both consistency scores and entropy scores for the predicted labels and selecting the outputs
based on the principle of minimization of entropy [10].

2. ISWC 2025 SemTab Challenge: MammoTab Task

Tabular data, particularly in the CSV format, is widely used in data analysis pipelines. However, the
lack of an explicit semantic structure often hinders effective analysis. Tables available on the Web also
serve as valuable information sources and, by enriching them with semantic annotations, they can be
leveraged for applications such as search, question answering, and knowledge base construction.

The SemTab Challenge provides a benchmark for fair evaluation and comparison of systems that
match knowledge graphs (KGs) and tables. In the MammoTab task, the focus is on CEA based on
Wikidata (version 20240720), with participating systems required to address the following challenges:

+ Disambiguation

« Homonymy resolution
« Alias resolution

« NIL detection

« Noise robustness

« Collective inference

Moreover, the task restricts approaches to those based on Large Language Models (LLMs), either
through fine-tuning or Retrieval-Augmented Generation (RAG).

3. Proposed Method

3.1. Multi-stage Entity Candidate Generation

For each cell, QID candidates are generated from the latest Wikidata dump through a six-stage process
designed to minimize noise:

1. Year and Digit Detection:

« If the values in the column are numeric and within the range 1770-2030, the column is
classified as a year column.

« If the values form a sequential series, the column is classified as an ID column.

« Appropriate QIDs are assigned to each type accordingly.

2. Exact Match: If the cell value exactly matches a Wikidata label string, the corresponding QID is
added to the candidate set.

3. Set Match: The cell value is tokenized in words, and if the resulting set exactly matches a Wikidata
label word set, the corresponding QID is added.

4. Set Match (Description Removal): Parenthetical text, comma-separated suffixes, and other sup-
plementary descriptions are removed from the cell value; if the resulting word set matches a
Wikidata label set, the QID is added.



5. Partial Set Match (label in cell value): Word sets partially matching a label’s word set are con-
sidered, but restricted to sets of size at most min(2 x |S|,|S| + 5) where S is the word set of the
original label. For example:

« If |S| = 2, allow up to 4 words.
« If |S| = 6, allow up to 11 words.

6. Partial Set Match (cell value in label): Similar to step 5, but checking whether the cell value’s
word set is contained in the label’s word set, with the same size restrictions.

This staged approach ensures high coverage while reducing the likelihood of introducing noisy QID
candidates.

3.2. Initial Cell Type Annotation (CTA)
3.2.1. Majority Voting

Column labels are estimated from the generated candidate sets as follows:

« For each column, retrieve the instanceOf labels of its multi-stage QID candidates from Wikidata.

« Flatten the label set and, if the most frequent label exceeds a majority threshold, assign it as the
column’s representative label.

« Aggregate the labels of all columns to form a pseudo-title for the table.

3.2.2. ChatGPT-based Column Name Generation

In addition, we prompt ChatGPT with the contents of each column to predict plausible column names,
which are then combined to form another pseudo-title for the table.

3.3. Iterative CEA and CTA

Using the initial CTA results, we perform CEA with the state-of-the-art model, TableLlama [11]. Based
on the obtained QIDs, the CTA is updated to re-estimate column semantics. CEA is then performed
again using the updated CTA. By alternating CTA and CEA in this way, we aim for mutual performance
improvements.

3.4. Transpose Table Strategy

Some tables contain long vertical columns, which column-oriented models such as TableLlama may
find challenging to interpret. By transposing the table before input, cell values that are semantically
related can be positioned closer together in text space, reinforcing contextual signals:

« This often improves the consistency of the type within columns.
» For cases where row-wise relationships are important, the original orientation is preferable.

We perform a CTA on both the original and transposed versions of the table, improving QID accuracy
through complementary perspectives.
3.5. Unsupervised Score Calculation

Since no development set with labels is provided, the performance of the model must be estimated
without supervision, following the principle of minimization of entropy [10].
Consistency Score: For each column, compute the agreement ratio of the instance0f label mode:

count(mode(preds))

mode_ratio =
|preds|



Table 1
Multi-stage Entity Candidate Generation results and cumulative coverage rates.

Stage Found Unmatched Cumulative Found Coverage (%)
1 24596 10482 24596 70.1
2 674 9808 25270 72.0
3 934 8800 26204 74.7
4 3110 5690 29314 83.6
5 1035 4655 30349 86.5
6 2040 2615 32389 92.3

Entropy Score: For each column, compute the entropy of the instanceo0f label distribution, where a
lower entropy indicates more consistent predictions:

count(])
N

count(])
N

entropy = — Z
leL

log,

where L is the set of predicted labels and N is the number of cells in the column.

4. Experiment

4.1. Setup

Experiments were conducted on the MammoTab task of the ISWC 2025 SemTab Challenge. The primary
objectives were to improve the accuracy of the CEA for tables and to evaluate the proposed unsupervised
scoring methods on unlabeled data. The experimental dataset contained a total of 84,907 unique entities
and 3,576 target columns to be annotated.

For comparison, we prepared the following experimental variations:

+ Initial CTA based on candidate sets

+ Initial CTA based on ChatGPT-generated column names

« Comparison and integration of results from the original and transposed table representations
« Iterative CEA and CTA with 1 to 4 alternating steps

4.2. Multi-stage Entity Candidate Generation

The results in Table 1 show how the proposed multi-stage entity candidate generation pipeline pro-
gressively improves coverage while controlling noise. Stage 1, which performs exact matching and
high-confidence heuristics, immediately recovers 70.1% of entities (24,596 matches), leaving 10,482
unmatched. Stages 2 and 3 provide modest gains (0.6% and 2.7% additional coverage, respectively),
indicating that set-based matching and description-removed matching capture only a small fraction of
remaining entities. A substantial improvement occurs at Stage 4, where controlled partial set matching
(label in cell value) yields a jump of 8.9 percentage points, reducing the unmatched set to 5,690 entities.
This suggests that carefully expanding match criteria is highly effective for bridging coverage gaps.
Stages 5 and 6 add further recall through reversed partial matching strategies, reaching a final coverage
of 92.3%.

Overall, the stage-wise progression reflects a deliberate trade-off: early stages prioritize precision
with strict matching, while later stages boost recall by relaxing constraints in a controlled manner.
The large gain at Stage 4 underscores its central role in balancing coverage expansion against noise
suppression.



Table 2
Example of correctly labeled columns using initial CTA (multi-stage candidate generation + instance0f-based
majority voting).

Year film human.film director

1976  Eat My Dust! Charles Byron Griffith
1976  Hollywood Boulevard Joe Dante

4.3. Initial CTA Performance

Table 2 shows an example in which the initial CTA, estimated from the candidate set using majority
voting, correctly assigned column labels: These results indicate that the combination of multi-stage
candidate generation and instanceOf-based CTA enables a reasonable degree of column semantic
estimation, even without explicit column names. Given that the evaluation target consisted of a total
of 3,576 columns, the Step 1 results in Table 3 show that the columns 328 + 23 + 303 + 942 = 1,596
remained unlabeled. This corresponds to approximately 55.4% of the columns being successfully labeled
in the initial CTA stage. These results indicate that the combination of multi-stage candidate generation
and instanceOf-based CTA enables a reasonable degree of column semantic estimation even without
explicit column names.

4.4. Iterative CTA and CEA Performance
4.4.1. Labeling Coverage (Table 3, Table 4)

Tables 3 and 4 show the number of columns for which labels could not be assigned at each step for
different initialization strategies. Significant improvements are observed in the early iterations (Step 1
and Step 2), after which the performance gains diminish, indicating that the iterative process quickly
approaches a stable state. The transpose-based approach (Step 2-2 in Table 3) is particularly effective
in reducing the number of unlabeled cells, especially in challenging cases where the most frequent
label is a Wikimedia disambiguation page. When starting with ChatGPT-based column name estimation
(Table 4), the initial steps also produce improvements; however, later iterations show limited additional
gains, and candidate set-based initialization ultimately achieves more stable and consistent performance
across iterations.

Given that the evaluation target comprised a total of 3,576 columns, we also calculated the labeling
rate for each step, defined as the percentage of columns with assigned labels out of the total. As shown
in Table 3, the candidate set—based initialization labeled approximately 55.4% of columns at Step 1,
while the ChatGPT-based initialization (Table 4) achieved a slightly higher rate of 58.9% at the same
step. Interestingly, the labeling rate temporarily decreases at Step 2 in both settings. This drop can be
explained by the fact that the first CEA pass fixes entity linking decisions, which in turn reduces the
diversity of available candidates for subsequent CTA, leaving some columns without any dominant
type label. In practice, this means that low-confidence or noisy candidates are eliminated, which may
reduce coverage, but can also improve overall precision in later iterations. Thus, the Step 2 decrease
should not necessarily be interpreted as a performance degradation, but rather as a selective filtering
effect that prioritizes high-confidence assignments. In particular, the transpose-based approach in
Step 2-2 for candidate set—based initialization reached the highest coverage of 59.1%, indicating that
transposition can recover labels for some columns that remain unlabeled in the original orientation. In
our implementation, the set of candidates for each column is constructed as the union of candidates
obtained from the original and transposed table representations, thereby leveraging complementary
contextual cues from both orientations.



Table 3
Number of columns without labels for candidate set-based initialization and corresponding labeling rates.

Step Empty type list Max instance < Disambiguation Low element Labeling rate
50% page majority variation (%)
1 328 23 303 942 55.4
2 329 463 122 942 48.3
2-2 328 158 88 942 59.1
3-2 328 142 92 942 59.1
4-2 328 135 85 1002 58.0
Table 4
Number of columns without labels for ChatGPT-based initialization and corresponding labeling rates.
Step Empty type list Max instance < Disambiguation Low element Labeling rate
50% page majority variation (%)
1 311 126 79 1034 58.9
310 126 77 1015 59.4
2-2 330 134 90 1002 58.1
Table 5

Iterative CEA unsupervised scores (original table).

Step Score Mean Quantile (0.25, 0.50, 0.75)

1 scorel 0.538 (0.292, 0.440, 0.862)
1 score2  1.689 (0.701, 1.588, 2.442)
2 scorel 0.549 (0.308, 0.455, 0.902)
2 score2 1.638 (0.592, 1.585, 2.350)
3 scorel 0.549 (0.304, 0.444, 0.909)
3 score2  1.641 (0.589, 1.585, 2.370)
4 scorel 0.549 (0.308, 0.450, 0.898)
4 score2 1.636 (0.592, 1.585, 2.359)

4.4.2. Unsupervised Score (Tables 5-7)

We evaluated the proposed unsupervised scores—consistency (scorel) and entropy (score2)—to quanti-
tatively assess prediction stability and uncertainty without explicit gold labels. For the original table
orientation (Table 5), there was a substantial improvement from Step 1 to Step 2 for both metrics, after
which the scores plateaued, indicating that the iterative process quickly reaches a stable state. When
using the transposed table (Table 6), both the consistency and entropy scores were generally higher
than those of the original table, suggesting that the transposed format facilitates more coherent type
predictions across columns.

In the case of ChatGPT-based initialization (Table 7), Step 1 achieved better scores than candidate
set—based initialization, showing the benefit of leveraging LLM-generated column names for the initial
step. However, this advantage diminished in Step 2, where the scores dropped noticeably, implying
that the LLM-derived initial labels may introduce inconsistencies during subsequent iterations. For the
transposed setting (Table 8), Step 1 achieved slightly higher consistency and lower entropy compared
to the original ChatGPT start (Table 7), indicating modest gains from improved contextual proximity.
However, Step 2 did not yield further improvements, suggesting limited benefit from iterative refinement
in this configuration.

Finally, by selecting the better score from either the original or transposed results at each step (Table 9),
we were able to combine the strengths of both orientations, achieving the highest performance across all



Table 6
Iterative CEA unsupervised scores (transposed table).

Step Score Mean Quantile (0.25, 0.50, 0.75)

1 scorel  0.543 (0.286, 0.449, 0.875)
1 score2  1.676 (0.650, 1.585, 2.420)
2 scorel  0.552 (0.307, 0.467, 0.900)
2 score2  1.629 (0.597, 1.561, 2.360)
3 scorel  0.549 (0.300, 0.455, 0.889)
3 score2  1.641 (0.624, 1.577, 2.371)
4 scorel  0.550 (0.304, 0.462, 0.900)
4 score2  1.636 (0.599, 1.585, 2.371)

Table 7
Iterative CEA unsupervised scores (ChatGPT-based initialization).

Step Score Mean Quantile (0.25, 0.50, 0.75)

1 scorel 0.547 (0.302, 0.444, 0.886)
1 score2  1.648 (0.643, 1.585, 2.371)
2 scorel  0.549 (0.297, 0.462, 0.895)
2 score2  1.657 (0.628, 1.585, 2.406)

Table 8
Iterative CEA unsupervised scores (transposed table, ChatGPT-based initialization).

Step Score Mean Quantile (0.25, 0.50, 0.75)

1 scorel  0.548 (0.300, 0.447, 0.889)
1 score2  1.650 (0.627, 1.585, 2.396)
2 scorel  0.548 (0.300, 0.455, 0.892)
2 score2  1.662 (0.625, 1.585, 2.413)

steps (mean consistency = 0.563, mean entropy = 1.585). This indicates that the two orientations provide
complementary information that can be exploited to improve unsupervised performance estimation.
When applying best selection (Table 10), both consistency and entropy scores improved over single-
orientation ChatGPT start results. This confirms that, as with candidate set—based initialization,
combining complementary orientations enhances robustness. Nonetheless, even in the best-selection
setting, ChatGPT initialization did not surpass the highest scores obtained from the candidate set-based
best selection (Table 9), indicating that LLM-derived column names, while helpful in early stages, require
additional filtering to match the stability of candidate-based methods.

4.4.3. Visualization of Unsupervised Score Distributions

Visualizing the distributions of unsupervised scores allows for an intuitive comparison between steps
and methods. For Step 1 with the original table orientation (Figure 1), the scores are widely distributed
without clear mode, indicating a high variability and low consistency in the predictions. This reflects
the insufficient contextual information available when only the initial CTA and CEA are combined.
In Step 2 (Figure 2), the score distribution becomes more concentrated and the mode agreement rate
improves. This suggests that the iterative reasoning process effectively enhances semantic coherence
between columns, enabling more stable label estimation for many columns. When using the transposed
table in Step 2 (Figure 3), the score distribution becomes even sharper, with an increased number of
high-scoring columns. This trend implies that transposition emphasizes textual proximity between



Table 9
Iterative CEA unsupervised scores (best of original/transpose).

Step Score Mean Quantile (0.25, 0.50, 0.75)

1 scorel  0.557 (0.308, 0.482, 0.903)
1 score2 1.621 (0.581, 1.573, 2.326)
2 scorel 0.563 (0.325, 0.495, 0.923)
2 score2 1.585 (0.463, 1.530, 2.281)
3 scorel  0.562 (0.318, 0.483, 0.924)
3 score2  1.586 (0.465, 1.549, 2.285)
4 scorel 0561 (0.324, 0.490, 0.923)
4 score2 1587 (0.481, 1.554, 2.292)

Table 10
Iterative CEA unsupervised scores (best of original/transpose, ChatGPT-based initialization).

Step Score Mean Quantile (0.25, 0.50, 0.75)

1 scorel  0.560 (0.316, 0.474, 0.912)
1 score2  1.596 (0.503, 1.549, 2.307)
2 scorel  0.562 (0.308, 0.500, 0.918)
2 score2  1.604 (0.507, 1.544, 2.322)
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Figure 1: Step 1 score distribution (original table).

semantically related cells, improving the contextual understanding of the model, especially for columns
with strong context dependency.

Finally, when selecting the better prediction between the original and transposed results for each
column in Step 2 (Figure 4), the score distribution reaches its highest concentration, with almost no
columns of low scores remaining. This demonstrates that choosing the better orientation for each
column serves as an effective and practical ensemble strategy, maximizing overall consistency and
prediction reliability.

4.5. Discussion

The experimental results clearly demonstrate the effectiveness of collective inference in enhancing
column-wise consistency and refining cell-level entity predictions. Through the iterative interaction
between CTA and CEA, even columns with insufficient initial information benefited from relationships
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Figure 2: Step 2 score distribution (original table).
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Figure 3: Step 2 score distribution (transposed table).

with other columns, leading to improved accuracy. This effect is particularly evident in the notable
increase in the consistency score from Step 1 to Step 2 (Figures 1 and 2), indicating that semantic
coherence across the table was strengthened in the early stages of iteration.

The utility of the transpose strategy was also confirmed. By increasing textual proximity between
semantically related cells, the model’s contextual understanding was significantly enhanced, especially
for column-oriented language models such as TableLlama. In Step 2 with the transposed table (Figure 3),
the score distribution reached its peak, with higher agreement rates and lower entropy compared to the
original orientation. This suggests that transposition acts as an effective form of context reinforcement,
particularly for columns requiring strong contextual cues.

Moreover, selecting the better result between the original and transposed orientations for each column
proved to be a powerful ensemble-like strategy. This “best selection” approach (Figure 4) produced
the most concentrated score distribution, with a substantial reduction in low-scoring columns. The
outcome highlights that structural uncertainty in the interpretation of the table can be mitigated by
integrating complementary perspectives from different orientations, thus improving the robustness of
the model predictions.

However, the use of ChatGPT-generated column names for initialization exhibited clear limitations.
Although this approach provided a temporary advantage in Step 1 over candidate set-based initialization,
it failed to adapt effectively in later iterations. The column names generated by ChatGPT were sometimes
ambiguous or overly specific, introducing noise during the iterative process. As shown in Table 7,
the initial benefit was not sustained and subsequent scores lagged behind those from initialization
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according to the set of candidates.

Finally, the proposed unsupervised evaluation metrics, consistency and entropy, proved to be reliable
indicators of model performance trends, even in the absence of gold labels. The marked improvement
from Step 1 to Step 2, followed by gradual stabilization, quantitatively supports the qualitative enhance-
ment of the label predictions. These metrics could be further applied for early stopping in iterative
processes or for detecting overfitting, offering practical benefits for unsupervised table annotation
pipelines.

5. Conclusion

This study presented a method for Cell Entity Annotation in the ISWC 2025 SemTab Challenge Mam-
moTab task, combining multi-stage QID candidate generation with an iterative process of CTA and
CEA. The approach was designed to operate without gold labels, using unsupervised evaluation metrics
based on consistency and entropy to monitor and guide performance.

Experimental results demonstrated that the iterative CTA-CEA framework substantially improved
column-wise semantic coherence, particularly between Step 1 and Step 2, and that the transpose strategy
further enhanced contextual understanding for column-oriented language models. Selecting the better
result between the original and transposed tables yielded the highest overall performance, confirming
the value of integrating complementary structural perspectives.

Although ChatGPT-based initialization provided a temporary advantage in early iterations, it proved
less effective in later stages due to the introduction of noise. The unsupervised metrics reliably reflected
performance trends, suggesting their applicability for early stopping and overfitting detection in
unsupervised annotation settings.
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